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Abstract

Recent analyses of multifragmentation in terms of Fisher’s model and the related construction of

a phase diagram brings forth the problem of the true existence of the vapor phase and the meaning

of its associated pressure. Our analysis shows that a thermal emission picture is equivalent to a

Fisher-like equilibrium description which avoids the problem of the vapor and explains the recently

observed Boltzmann-like distribution of the emission times. In this picture a simple Fermi gas

thermometric relation is naturally justified. Low energy compound nucleus emission of intermediate

mass fragments is shown to scale according to Fisher’s formula and can be simultaneously fit with

the much higher energy ISiS multifragmentation data.
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After many decades of theoretical studies and of experimental pre-discoveries, recent

papers have published what can be considered a quantitative, credible liquid-vapor phase

diagram containing the coexistence line up to the critical temperature [1]. Somewhat un-

expectedly, this diagram has not been obtained through the study of caloric curves [2, 3]

or anomalous heat capacities [4, 5]. Rather, it was generated from the fitting of the charge

distributions in multifragmentation by means of a Coulomb corrected Fisher’s formula [1, 6]

giving the cluster composition of a vapor:

nA(T ) = q0A
−τ exp

[

∆µA

T
−

c0εA
σ

T
−

ECoul

T

]

, (1)

where q0 is a normalization constant [6], τ is the critical exponent giving rise to a power law

at criticality, A is the cluster number, ∆µ is the difference of chemical potentials between

the liquid and the vapor, c0 is the surface energy coefficient, T is the temperature, ε is the

distance from the critical temperature Tc and is ε = (Tc−T )/Tc, σ is another critical exponent

(expected to be approximately 2/3, if one interprets the second term in the exponent as the

surface energy of a cluster of mass A divided by the temperature) and ECoul is the Coulomb

energy [13]. For ∆µ = 0 the liquid and the vapor are in equilibrium and Eq. (1) can be taken

to be the equivalent of the coexistence line. More conventionally, one can immediately obtain

from Eq. (1) the usual p, T and ρ, T phase diagrams by recalling that in Fisher’s model, the

clusterization is assumed to exhaust all the non-idealities of the gas. It then becomes an

ideal gas of clusters. Consequently, the total pressure is

p(T ) =
∑

A

pA(T ) = T
∑

A

nA(T ), (2)

the scaled pressure p/pc is
p

pc

=
T

∑

nA(T )

Tc
∑

nA(Tc)
, (3)

and the density is

ρ =
∑

A

AnA(T ). (4)

Tests on the 3-dimensional Ising model [7] demonstrate a beautiful agreement between the

Ising cluster distributions and Eq. (1), and analysis of many multifragmentation reactions

[1, 8] show equally good agreement, leading to the claim of characterization of the nuclear

liquid-vapor phase diagram.

The only troubling point in this otherwise elegant picture is summarized by the question:

where is the vapor? Does the nuclear system truly present itself at some time like a mixed
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phase system with the vapor being somehow restrained, either statically or dynamically in

contact with the liquid phase, whatever that might be? And, what is the meaning of vapor

pressure, when clearly the system is freely decaying in vacuum against no pressure?

The purpose of this paper is to show:

• why an equilibrium description, such as Fisher’s, is relevant to the free vacuum decay

of a multifragmenting system;

• how we can talk about coexistence without the vapor being present;

• and why a simple thermometric equation such as E = aT 2 works better than empirical

thermometers such as isotope thermometers.

We begin with a time-honored assumption which we do not try to justify other than

through the clarification it brings to the experimental picture. We assume that, after prompt

emission in the initial phase of the collision has been isolated or accounted for, the resulting

system relaxes in shape and density and thermalizes on a time scale faster than its thermal

decay. This will undoubtedly bring to mind the compound nucleus assumption, and not

without reason.

At this point the system emits particles in vacuum, according to standard statistical

decay rate theories. Experimentally, the initial excitation energy is typically evaluated

calorimetrically after accounting for pre-equilibrium emission, and the initial temperature

can be estimated by the thermometric equation of a Fermi gas

E = aT 2 (5)

allowing perhaps for a weak dependence of a on T , and remembering that the system is

most likely still in the strongly degenerate regime.

But again, what is the relevance of this to liquid-vapor phase transition, and where is the

vapor?

Let us for a moment imagine the nucleus surrounded with its saturated vapor. At equi-

librium, any particle evaporated by the nucleus will be restored by the vapor bombarding

the nucleus. In other words, the outward evaporation flux from the nucleus to the vapor is

exactly matched by the inward condensation flux. This is true for any kind of evaporated

particle. Thus, the vapor acts like a mirror, reflecting back into the nucleus the particles

which it is trying to evaporate. One can obviously probe the vapor by putting a detector

in contact with it. But since the outward and inward fluxes are identically the same, one
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might as well put the detector in contact with the nucleus itself. At equilibrium, the two

measured fluxes must be the same. Therefore, we do not need the vapor to be present in

order to characterize it completely. We can just as well study the evaporation of the nucleus

in equilibrium and dispense with our imaginary surrounding saturated vapor.

Quantitatively, we can simply relate the concentration CA(T ) of any species A in the

vapor to the corresponding decay rate PA(T ) (controlled by a decay width ΓA) from the

nucleus by matching the fluxes

PA(T ) =
ΓA(T )

h̄
= CA(T ) 〈vA(T )σinv(vA)〉 (6)

where vA(T ) is the velocity of the species A (of order (T/A)1/2) crossing the nuclear interface

represented by the inverse cross section σinv.

Thus, the vapor phase in equilibrium can be completely characterized in terms of the

decay rate. The vapor need not be there at all. This is not a nuclear peculiarity. It is just

the same for a glass of water exposed to dry air or vacuum. One speaks in these situations

of a “virtual vapor”, realizing that first order phase transitions depend exclusively upon the

intrinsic properties of the two phases, and not on their interaction. But, of course, if the

vapor is not there to restore the emitting system with its back flux, evaporation will proceed,

leading to a cooling off of the system. Instantaneously, the physical picture described above

is still valid, but not globally. The result of a global evaporation in vacuum is unfortunate in

terms of the analysis, as it integrates over a continuum of temperatures. It is unfortunate for

the complications it lends to the possible thermometers (kinetic energy, isotope ratios, etc.),

as well as to the abundances of the various species. In this aspect lies the real difference

between our approach and any true equilibrium approach.

But, there is a simple, astute way to avoid this complication. Let us choose to consider

only particles that are emitted very rarely so that, if they are not emitted at the beginning

of the decay, they are effectively not emitted at all. In other words, let us consider only

particles that by virtue of their large surface energy, have a high emission barrier.

As an example, consider a decaying system with only three available exit channels. We

call them channels a, b, and n with barriers Ba, Bb, and Bn. For Bn � Ba and Bb we know

that the probability of emission of particles of type b at a fixed temperature is approximately

pb ≈ e−(Bb−Bn)/T . (7)
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FIG. 1: The effective temperature of a Fermi system with three exit channels (a, b, and n) is

plotted as function of initial excitation energy for two cases: one where barriers Ba and Bb are

large (crosses) compared to Bn=6 MeV, and another where Ba or Bb is similar (solid circles) to

Bn. The initial temperature as a function of initial excitation energy is shown by the open circles.

Since the nucleus cools as particles are emitted, the total emission probability of particles

of type b from a nucleus at initial temperature T0 goes like

Pb ∝
∫ T0

0
e−(Bb−Bn)/T 2aTdT. (8)

A similar expression exists for Pa. The ratio of Pb/Pa is

Pb

Pa

=
∆2

b

∆2
a

∫ T0/∆b

0 e−1/xxdx
∫ T0/∆a

0 e−1/xxdx
(9)

where ∆b = Bb − Bn and ∆a = Ba − Bn. The ratio Pb/Pa can also be used to extract an

effective temperature Teff

Pb

Pa
= exp

(

−
Bb −Ba

Teff

)

. (10)

An example of how the effective temperature compares with the initial temperature T0

is given in Fig. 1 for different values of Bb and Ba. The case where Ba and Bb are large

(crosses) gives effective temperatures very near to the initial temperature T0 (open circles).

When either Ba or Bb is near the barrier of the most probable channel (solid circles), the

effective temperature is very different from the initial temperature.

Our goal then should be to choose exit channels with large barriers in order to justify our

use of the initial Fermi temperatures. This is what has been done in the analyses leading to

the nuclear phase diagrams [1, 8], where the fragments with charge Z < 5 were excluded.

5



FIG. 2: The mean emission times (in fm/c) of fragments with atomic number 4 ≤ Z ≤ 9 are

plotted (solid symbols) versus inverse temperature for the reaction π+Au at 8 GeV/c [10, 11]. The

average yields of the same fragments are plotted versus 1/T (solid symbols). The line represents

a Boltzmann fit to the fragment yields. This same line has been superimposed (shifted) on to the

emission times.

Under these conditions, the validity of Eq. (6) is guaranteed. The rate can be related to the

vapor concentration and the phase diagram can be constructed. The temperature necessary

for our purpose is fortunately the initial temperature and not the average temperature

determined for multiply emitted particles. The correctness of a thermometric relation E =

aT 2 can be tested “a posteriori” by verifying the linearity of the Fisher’s plots [1, 8] and

their predecessors [9]. This linearity, extending over many orders of magnitude for a variety

of fragments, is in our view the strongest test yet of a Fermi gas thermometric relationship.

In fact one can turn the problem around and determine the thermometric relationship up

to rather high excitation energies by the requirement that it leads to a linear Fisher’s plot.

We offer three additional proofs for our physical picture of a hot remnant evaporating

particles.

First, the abundances of the observed fragments as a function temperature allow us

to construct an Arrhenius plot (log P versus 1/T ) which is equivalent to a Fisher’s plot

[1, 8, 9]. The slope is the effective “barrier” B for the emission of the particle. This can be

seen immediately by considering that the yields 〈n〉 reflect the thermal scaling of the decay

width

〈n〉 ∝ Γ ∝ e−B/T . (11)
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FIG. 3: Results for the Fisher-scaled yield distribution versus the scaled temperature for the Ni+C

low energy compound nucleus decay data.

But the very same barrier and the very same Boltzmann factor intervene in determining the

mean time separation t between two fragments since

t =
h̄

Γ
∝ eB/T . (12)

Such a time t is the reciprocal of Γ. Therefore, the same Arrhenius plot with the same

barrier ought to explain both the temperature dependence of the abundances and of the

times. This is exactly the case as shown in Fig. 2. The ISiS collaboration has measured the

yields (open symbols) [1] and the mean emission times (solid symbols) [10, 11] of intermediate

mass fragments as a function of excitation energy. These energies can be translated into a

Fermi temperature [1] as discussed above. A Boltzmann fit to the yields is shown by the

solid line. That same line has been superimposed (shifted) onto the emission time data and

describes the data very well. In other words, the two different observables and their energy

dependence are described by the same barrier.

Second, since all that has been said above holds exactly for low excitation energies,

compound nuclear decay suddenly becomes relevant to the liquid-vapor phase transition. We

should be able to scale known low energy compound nucleus particle yields [12] according

to the Fisher’s scaling.

This works out rather well as can be seen in Fig. 3 for the reaction of 64Ni+12C [12].

These data were taken at the 88-inch cyclotron using Ni beams with energies between 6

and 13 MeV/nucleon. Given that the excitation energies are extremely small and that the

7



FIG. 4: The Fisher scaled yields are plotted versus the scaled temperature for the indicated

reactions.

fragment emission barriers are large compared to those of neutron evaporation, there is here

little doubt about a thermometric relation of the kind E = aT 2. The data have been scaled

using the very same Fisher parameters as extracted from the ISiS data [1], except for the

critical excitation energy EC , the Coulomb correction parameter [1, 8], and the value of ∆µ

which were allowed to vary freely. The values of the Fisher parameters are listed in Fig. 3.

The data scale over many orders of magnitude. With the compound nucleus data, we

are far from the critical temperature, yet the resulting extraction of EC gives only a modest

uncertainty (±0.3 MeV). If the other Fisher parameters are also allowed to vary freely

(not constrained to ISiS values), the uncertainty of EC becomes large, ±2 MeV. Still, it is

remarkable that we observe a consistent scaling in the compound nucleus data using the

scaling parameters from the high excitation energy experiments. From this example we see

in these low energy reactions a very interesting source for further characterization of the

phase transition, in particular for anchoring the parameters of Fisher’s model to the well

established T=0 parameters of the liquid drop model.

For our third and final demonstration, we show the results of a consistent fit of the ISiS

data [1] and of the low energy compound nucleus data [12] with the Fisher model modified

for Coulomb (Eq. (1)). The resulting Fisher scaling is shown in Fig. 4 for both systems. A
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smooth, continuous behavior is observed from the compound nucleus data up to the higher

energy systems. This smooth behavior using a consistent set of Fisher parameters indicates

a natural extension of the compound nuclear decay mechanism up to higher energies.

In conclusion, the ISiS data as well as low energy compound nucleus data contain the

signature of a liquid to vapor phase transition via their strict adherence to Fisher’s model.

Through a direct examination of the mean emission times of the ISiS fragmentation reactions,

we infer a stochastic, thermal emission scenario consistent with complex fragment emission

at much lower excitation energies.
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